Neuronal and astroglial responses to the serotonin and norepinephrine neurotoxin: 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine.

نویسندگان

  • Beth A Luellen
  • Diane B Miller
  • Angela C Chisnell
  • Dennis L Murphy
  • James P O'Callaghan
  • Anne Milasincic Andrews
چکیده

1-Methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH2-MPTP) causes long-term loss of forebrain serotonin (5-HT) and norepinephrine (NE) and consequently, is unlike 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its other 2'-analogs that primarily deplete striatal dopamine (DA). In the present investigation into the acute effects of 2'-NH2-MPTP in mice, profound decreases in cortical and hippocampal 5-HT and NE to 10 to 40% of control were observed as early as 30 min post-treatment and lasted throughout the ensuing 21 days. Striatal DA was decreased to 60 to 80% of control during the first 48 h but returned to normal by 72 h. Reactive gliosis, which occurs in response to neurodegeneration was not evident by immunocytochemistry but was detected by enzyme-linked immunosorbent assay, where glial fibrillary acidic protein (GFAP) was increased to 130% of control in cortex, hippocampus, and brain stem 48 to 72 h post-treatment. To explore the possibility that 5-HT modulates the astrocytic response to injury, 2'-NH2-MPTP was used to damage 5-HT axons 2 weeks before administration of the potent DA neurotoxin 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH3-MPTP). Despite a 90% decrement in striatal DA in 2'-NH2-MPTP/2'-CH3-MPTP-treated mice, increases in GFAP were attenuated compared to mice treated with 2'-CH3-MPTP alone. Thus, 2'-NH2-MPTP causes severe and immediate decrements in 5-HT and NE in frontal cortex and hippocampus, yet induces a modest GFAP response compared with other MPTP analogs that have their primary effect on DA. These results demonstrate the importance of obtaining quantitative assessments of GFAP to detect astroglial responses associated with selective damage to neurotransmitter systems with low-density innervation and suggest that serotonin may facilitate the astrocytic response to striatal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tetrahydropyridine] Depletes Serotonin and Norepinephrine in Rats: A Comparison with 2 -CH3-MPTP [1-Methyl-4-(2 - methylphenyl)-1,2,3,6-tetrahydropyridine]

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) analog, 1-methyl-4-(2 -aminophenyl)-1,2,3,6-tetrahydropyridine (2 -NH2MPTP), depletes brain serotonin and norepinephrine in mice without affecting striatal dopamine. The present study was conducted to determine whether 2 -NH2-MPTP would be similarly neurotoxic to rats. Four injections of 20 mg/kg 2 -NH2-MPTP caused 80 to 90% depletions in ...

متن کامل

The role of membrane and vesicular monoamine transporters in the neurotoxic and hypothermic effects of 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH(2)-MPTP).

The neurotoxin 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH(2)-MPTP) damages forebrain serotonin (5-HT) and norepinephrine (NE) nerve terminals while sparing striatal dopaminergic innervation. Previous studies suggest that 2'-NH(2)-MPTP acts by a mechanism that involves uptake by the plasma membrane 5-HT and NE transporters. The present investigation further explores the molecu...

متن کامل

Late onset loss of hippocampal 5-HT and NE is accompanied by increases in BDNF protein expression in mice co-expressing mutant APP and PS1.

Transgenic mice expressing both mutant amyloid precursor protein (APPswe) and presenilin-1 (PS1DeltaE9) develop amyloid deposits as early as 4 months of age and preliminary evidence suggests that this may be associated with degenerative changes in serotonin axons innervating the dentate gyrus of the hippocampus. In the present investigation, which focused on further delineating the effects of a...

متن کامل

Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys.

Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(...

متن کامل

Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.

N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces neuropathological and clinical abnormalities in humans, monkeys, and mice that closely resemble idiopathic parkinsonism. N-Methyl-4-phenylpyridine (MPP+), a metabolite of MPTP formed by monoamine oxidase B, is accumulated into striatal and cerebral cortical synaptosomes by the dopamine and norepinephrine uptake systems, respectively, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 307 3  شماره 

صفحات  -

تاریخ انتشار 2003